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ABSTRACT : Nanosilver has been widely used in industries due to its 
antibacterial, antifungal, and antioxidant properties. However, prolonged 
exposure to nanosilver imposes negatively upon human health and may 
cause conditions such as argyria, argyrosis, and DNA damage. In recent 
times, the rapid diversification of industrial nanosilver without 
accompanying risk assessment exercises has contributed to a lack of 
understanding of such hazards, thus leading to negligence in safe work 
practices and exposing workers to danger. This work demonstrates the 
Bayesian network (BN) model application to predict the hazards of 
nanosilver. The model characterises the relationship between the 
physicochemical properties of nanoparticles and their biological effects on 
the human body based on expert elicitation and data from independent 
publications. For hazard prediction purposes, three nanosilver variants of 
different particle sizes, shapes, surface coatings, administration routes, and 
applications were chosen. Predictions obtained using the BN model are in 
line with published experimental studies. The potential health hazard of a 
nanosilver variant was shown to depend heavily on its physicochemical 
properties. Resultantly, the BN model developed in this work can make such 
predictions accurately, even with limited information. The outcome of this 
work will be useful in supporting the improvement of occupational safety and 
health practices in the industry. 

Keywords - Occupational Safety and Health, Health Hazard, 
Nanomaterials Exposure, Prediction of Health Hazard, Workplace 
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Introducing the Journal of 
Occupational Safety and Health 
 

 

 
The National Institute of Occupational Safety and Health 
(NIOSH), Malaysia is delighted to announce the publication 
of Journal of Occupational Safety and Health (JOSH). 

JOSH is devoted to enhancing the knowledge and practice 
of occupational safety and health by widely disseminating 
research articles and applied studies of highest quality. 

JOSH provides a solid base to bridge the issues and 
concerns related to occupational safety and health. JOSH 
offers scholarly, peer-reviewed articles, including 
correspondence, regular papers, articles and short reports, 
announcements and etc. 

It is intended that this journal should serve the OSH 
community, practitioners, students and public while 
providing vital information for the promotion of workplace 
health and safety. 

 
Apart from that JOSH aims: 

• To promote debate and discussion on practical and 
theoretical aspects of OSH 

• To encourage authors to comment critically on 
current OSH practices and discuss new concepts and 
emerging theories in OSH 

• To inform OSH practitioners and students of 
current issues 

JOSH is poised to become an essential resource in 
our efforts to promote and protect the safety and 
health of workers. 

 

 
 

From the Chief Executive Editor 
 

 

 
Workplace safety and health is a priority. However, there is 
still more to be done to foster the safety culture and 
awareness among us. The imperative focus is our 
commitment to take action and make the necessary changes 
to ensure that safety and health is the top priority for 
everyone. 

Journal of Occupational Safety and Health (JOSH) - plays 
significant roles in disseminating and promoting good 
practice of safety and health at workplace. 

For this edition, it is important to highlight the article titled 
“Process Safety Management as A Sustainable Safety 
Process in Managing Chemical Accidents in Malaysia”.  For 
years, the chemicals and chemical products subsector is one 
of the largest contributors to investments in the 
manufacturing and petrochemical sector in Malaysia. In the 
country, continuous increment in the amount and complexity 
of industrial plants had been clearly apparent throughout the 
years, especially in the chemical processing industries (CPI), 
in line with the current industrial progress and development. 
However, these developments had also brought about an 
inevitable increment in the risk of major accident hazard 
occurrence as mismanagement of these facilities and plants 
could lead to the catastrophic effect of large-scale major 
accident hazards. The paper focused on reviewing the 
effectiveness of the process safety management (PSM) 
system based on the fourteen PSM elements in Chemical 
Process Industries (CPI) in country. This research paper  

                                                                       
highlighted that the Incident Investigation (II) 
element was important in defining the root causes of 
accidents in the Chemical Process Industry (CPI). 
Simultaneously, the paper also presented several 
tools and techniques to further improve effective 
performance and this evidence provides clear 
industry-specific advantages of PSM adoption and 
implementation. As the industrial processes become 
even more complex and the number of conditions to 
be controlled exceeds existing safety management 
procedures in facilities or plants and impacts human 
safety and health, an evolving PSM system should be 
more practical to prevent major industrial accidents. 

We hope that the journal’s contents will be referred 
to and reviewed by a wider audience, allowing for a 
vast academic base to further expending the subject 
for the betterment of workers and working 
environment. We aspire that the journal will be 
advantageous to all readers, as our objective is to 
serve the interest of everyone across all industries. 
Therefore, the prime focus will be on issues that are 
of direct importance to our everyday practices at 
workplace. 

 
Haji Ayop Salleh  
Chief Executive Editor 
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1.0 INTRODUCTION 

The International Organisation for Standardisation (ISO) defines “nanomaterial” as a “material with any external 
dimension in the nanoscale or having an internal structure or surface structure in the nanoscale”. “Nanoscale” is 
a length ranging “approximately from 1 nm to 100 nm” (The International Organization for Standardization (ISO), 
2015). The European Commission in 2011 defined “nanomaterial” as a “material containing particles in an 
unbound state or as aggregate or as an agglomerate and where, for 50% or more of the particles in the number 
size distribution, one or more external dimension is in size range 1–100 nm” [Commission recommendation of 18 
October 2011 on the definition of nanomaterial (Text with EEA Relevance) (2011/696/EU), 2011]. Due to their 
scale, nanoparticles behave and function differently in their bulk form, influenced by quantum and surface effects. 
Quantum effects refer to changes in optical, electrical, thermal, mechanical, and magnetic properties, whereas 
surface effects refer to increased reactivity due to increased exterior surface area (Azoulay et al., 2013). As a 
result, nanomaterials are often regarded as a new form of material with a wide range of applications in the 
healthcare, textile, cosmetics, agriculture, and construction industries. 

Of several metallic nanomaterials, silver nanoparticles (AgNPs) are one of the most vital. They are 
known for their antibacterial, antifungal, and antioxidant properties. Previous studies indicated that AgNPs limit 
the progression and growth of many bacteria, including Bacillus cereus and Citrobacter koseri, and the fungus 
Candida albicans. In particular, their antibacterial capacity is achieved as Ag/Ag+ from AgNPs binds the 
biomolecules present in microbial cells, thus preventing the replication of bacteria by inducing oxidative stress 
and cell death (Siddiqi et al., 2018). Consequently, AgNPs have been utilized mainly in the production of 
housecleaning products and medication. 

Although such studies extolled the benefits of AgNPs, they often also emphasise that overt exposure to 
these particles could deteriorate human health. Numerous in vivo studies determined that AgNPs are toxic to the 
mammalian skin, vascular system, liver, brain, lung, and reproductive organs. They not only accumulate but 
persist in these tissues, increasing the chances of severe toxicity (Ferdous & Nemmar, 2020; Gosens et al., 2015; 
Seiffert et al., 2016). Additionally, in vitro studies reported that the destructive effect of AgNPs on DNA could 
potentiate cancer by inducing the expression of genes associated with cell cycle progression (Ferdous & Nemmar, 
2020; Kaiser et al., 2013). Several conditions linked to exposure to AgNPs in the workplace have been reported, 
such as the irreversible pigmentation of the skin (argyria) or of the eyes (argyrosis) (Drake & Hazelwood, 2005; 
Van de Voorde et al., 2005). Drake & Hazelwood (2005) also reported other indications of toxicity such as upper 
(nose and throat) and lower (chest) respiratory tract irritation and reduced glutathione levels. The most common 
impact of prolonged silver exposure at the workplace is argyria. It is caused by the accumulation of Ag compounds 
in the human body, marked by a turning of the skin colour to blue or blue-grey. In 1935, sixteen workers of a 
silver-nitrate factory reportedly experienced generalized or local argyria (Harker & Hunter, 1935). A later study 
further proved that workplace exposure led to argyria, argyrosis and the intravenous accumulation of silver 
(Rosenman et al., 1979). Silver-related fatalities were reported by Barrie & Harding (1947), where autopsies on 
three individuals showed that each suffered from argyro-siderosis of the lungs due to years of workplace exposure 
to inhaled iron-oxide and silver dust. However, a study conducted by Pifer et al. (1989) had also demonstrated 
that the increased presence of silver in blood, feces, and hair of reclamation workers did not come with significant 
health effects. 

Regardless, the potential of occupational health hazards posed by nanomaterials on humans and the 
environment calls for enhanced risk-mitigating physicochemical measures to pre-empt their short and long-term 
toxic effects   (Azoulay et al., 2013; Karim et al., 2017; Kim & Yu, 2016; Yokel & MacPhail, 2011). The National 
Institute for Occupational Safety and Health (NIOSH US) recommended an Immediately Dangerous to Life or 
Health (IDHL) exposure dosage of 10 mg/m3 and the Recommended Exposure Limit (REL) was set to 0.01 mg/m3 
for metal dust such as silver on an 8-hour time-weighted average (TWA) concentration basis (National Institute 
for Occupational Safety and Health, 2016). Various risk assessment and control banding tools have been 
developed, including GoodNanoGuide (GNG), Stoffenmanager Nano, CB Nanotool 2.0, NanoSafer, ANSES 
Control Banding, and Queensland control banding worksheet (Winski, 2017). Unfortunately, as both their 
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particulate and molecular identities are responsible for their biological effects, the consequence of exposure to 
nanomaterials cannot be accurately predicted from the current understanding of their bulk properties. 

Furthermore, the conventional approach to data collection is not robust enough to keep up with the high 
speed of nanomaterial diversification in the industries. As a result, incomplete nanomaterials data hinders proper 
occupational health assessment of the workplace. To resolve this issue, the BN model previously published in 
Marvin et al. (2017) was redeveloped. Subsequently, the newly-derived model was applied towards the prediction 
of the potential health hazards caused by excessive and prolonged AgNP exposure in the workplace. The 
integration of risk assessment with BN was proposed through this work due to the displayed ability of our BN 
model as a machine learning tool towards the prediction of potential health hazards despite incomplete 
nanomaterial data. Outcomes from simulations additionally suggest that the model would capably capture the 
interaction and impact of physicochemical property changes within the nanomaterial network itself. In conclusion, 
the BN model produced in this work could strengthen the case for improving occupational health practices in the 
nanosilver industry. 

 

2.0 METHOD 

The new BN model was developed through a process depicted by the flow chart in Fig. 1. 

2.1 Data Collection 

The major nanomaterials used in the industries were identified based on published statistics involving ten paint 
and coating products available in the market and three prominent nanomaterials (i.e., titanium dioxide (TiO2), 
silicon dioxide (SiO2), and silver (Ag)) (StatNano : Nano Science, Technology and Industry Information, n.d.). 
Data for learning and validation were collected from independent results of published studies by Marvin et al. 
(2017), who had compiled reliable information on the characteristics of nanomaterials from several resources, 
including physical-chemical property databases and safety data sheets. Crucial parameters were determined that 
would allow the model to characterise the relationship between the physicochemical properties of nanoparticles 
and their biological effects on the human body. The data and state were then classified with reference to scientific 
publications verified by expert elicitation in Marvin et al. (2017), as shown in Tables 1 and 2. Overall, 237 and 
48 sets of data were incorporated for learning and validation, respectively. 

Table 2 lists the tested endpoints related to the biological effects of a nanomaterial, classified into None, 
Low, Medium, and High. Tested endpoints must demonstrate significant differences from the control (as reported 
by the article) to be classified as having a biological effect (Table 3). Notably, this scale reported only the 
probability of the nanomaterials exerting an effect (strength of the evidence) but not its level of severity. An 
overall effect node was included to depict the potential that a nanomaterial may exert a biological effect, as 
calculated from Equation 1. 
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Figure 1 BN Model Development 

 

Table 1 Classification of Data for Model Development 

Administration Route Study Type  Physicochemical 
Properties 

Potential Biological 
Effect 

Inhalation  
Oral  
Dermal  
Intravenous 

In vivo 
In vitro 

Shape  
Nanoparticle 
Surface area 
Surface charge 
Surface coatings 
Aggregation 
Particle size 

Cytotoxicity 
Neurological effects 
Pulmonary effects 
Fibrosis  
RCNS effects 
Genotoxicity 
Inflammation 

 

Table 2 Classification of States for Model Development 

Shape  Amorph, Irregular, Sphere 
Nanoparticle Ag, SiO2, TiO2 
Surface Area 0–15, 15–51, 51–101.25, 101.25–189, 189–2025 
Surface Charge -50–-25, -25–0, 0–-25 
Surface Coatings AHPP, Carbon, Carboxyl, Citrate, Hydroxyl, None, PVP, Silane-Aluminium 
Aggregation High, Low, Medium 
Particle Size 0–10, 10–50, 50–100, > 100 
Cytotoxicity 
Neurological Effects 
Pulmonary Effects 
Fibrosis  
RCNS Effects 

High, Low, Medium, None 
High, Low, Medium, None 
High, Low, Medium, None 
High, Low, Medium, None 
High, Low, Medium, None 

Start 

Data collection 

Model development 

Model validation using 
accuracy, confusion 

matrix and ROC curve 

Validated? 

End 

Yes 

No 
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Genotoxicity 
Inflammation 

High, Low, Medium, None 
High, Low, Medium, None 

 

∑
=

=
7

1k
iki BEHR       (1) 

 
where HRi is the nanomaterial hazard score of case i and BEik is the biological effect level score of case i and 
biological effect k. 

 

Table 3 Criteria for the Classification of Biological Effects (Marvin et al., 2017) 

Classification Criteria BEik 
None  Endpoint(s) falling 

under 
the defined effects 
were 
tested 

No significant 
difference in the 
tested endpoint 
compared to 
control 

  0 

Low Endpoint(s) falling 
under 
the defined effects 
were 
tested 

A significant 
difference in 
the tested 
endpoint 
compared to 
control 

  1 

Medium Endpoint(s) falling 
under 
the defined effects 
were 
tested 

A significant 
difference in 
the tested 
endpoint 
compared to 
control 

Dose-
response 
relationship 

• Positive indication of 
an effect in a few tests 
or in a few animals 

• < 75% decrease in cell 
viability  

2 

High Endpoint(s) falling 
under 
the defined effects 
were 
tested 

A significant 
difference in 
the tested 
endpoint 
compared to 
control 

Dose-
response 
relationship 

• Positive indication of 
an effect in several tests 
or in several animals 

• > 75% decrease in cell 
viability 

3 

 

2.2 Model Development 

Marvin et al. (2017) predictive nanomaterial risk model was redeveloped using GeNie from BayesFusion LLC. 
Its network of nodes was manually constructed according to the classifications given in Tables 1 and 2. The 
directions of its arc were drawn based on the input from expert-verified published data. Parameter learning was 
then executed using the data collected. Once completed, the model was ready for the validation process. Different 
analyses can be performed to understand the model, such as the strength of influence and sensitivity analysis. 
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2.3 Model Validation 

For validation purposes, 48 sets of data were selected randomly from the total data collected on Ag, SiO2, TiO2. 
These were matched with the developed model before the type of evaluation was selected. The three types of 
evaluation conducted by GeNIE are test only, leave-one-out cross-validation, and K-fold cross-validation. In this 
work, a K-fold cross-validation strategy was applied, with K = 10 and class nodes = NM_Hazard. The evaluation 
process first required the data set to be divided into K parts of equal size. The network was then trained in K-1 
parts before a final test was conducted at the end of the last K. The process was repeated K times by selecting 
different parts of the data for testing. With GeNIe, model usability is evaluated by keeping its core structure fixed, 
even as parameters are relearned during each fold (BayesFusion LLC, 2020). Three outcomes, namely accuracy, 
confusion matrix, and receiver operating characteristic (ROC) curve from the validation exercise, would indicate 
the validity of the model. 

 

3.0 RESULTS 

The BN model developed in this work is shown in Fig. 2. 

3.1 Accuracy 

The ‘Accuracy’ tab showed that the model achieved a 75% accuracy rate by predicting the correct NM_Hazard 
in 36 out of 48 data sets (Fig. 3). GeNIe had assigned the most probable class node state for each data set in this 
process. The tab also denoted the model sensitivity and specificity (BayesFusion LLC, 2020). Its sensitivity 
towards None and Low was similar, with a prediction accuracy of 85.71% (n = 18/21) and 83.33% (n =5/6) for 
each. The model was less sensitive in predicting the NM_Hazard of High (66.67%, n = 6/9) and Medium (58.33%, 
n = 7/12) nodes. 
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Figure 2 BN Model for Nanomaterial Hazard of Titanium, Silicon Dioxide, and Silver 

 

 

Figure 3 Accuracy of the BN Model for Titanium, Silicon Dioxide, and Silver 

 

  

 

 



Journal of Occupational Safety and Health

8

Journal of Occupational Safety and Health 
 

3.2 Confusion Matrix 

The ‘Confusion Matrix’ table in Fig. 4 compared prediction directly against the true state of affairs. The columns 
represent the guesses produced by the model, while rows show how the data sets were actually classified. Here, it 
is clearly shown that the new BN model was largely successful in correctly assigning the data sets into their 
appropriate NM_Hazard classes. Bolded numbers were correctly identified instances for each class. However, all 
off-diagonal cells showed incorrectly identified classes (BayesFusion LLC, 2020). 
 

 
 

Figure 4 Confusion Matrix of the BN Model for Titanium, Silicon Dioxide, and Silver 

 

3.3 ROC Curve 

The ‘ROC Curve’ tab contained the ROC curves for individual data sets of each class variable, expressing the 
quality of a model-independent classification decision. A curve shows the possible accuracy ranges of the model, 
limited to a singular point on the curve as per the decision criterion applied by GeNIe. Choosing a different point 
will affect sensitivity and specificity and thus overall accuracy. The indistinct diagonal line represents a baseline 
ROC curve of a hypothetical classifier that is insignificant. A functional classifier would produce a curve above 
this diagonal line. The area under the ROC curve (AUC) is displayed above it. AUC is a simple but imperfect way 
of expressing the quality of the model using one number (BayesFusion LLC, 2020). Nonetheless, as each classifier 
(High, Medium, Low, and None) obtained a ROC curve above the diagonal line, it can be concluded that their use 
for NM_Hazard classification is suitable (Fig. 5). 
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a) ROC curve for NM Hazard = None 

 
b) ROC curve for NM Hazard = Low 

 

c) ROC curve for NM Hazard = Medium 

 

d) ROC curve for NM Hazard = High 

Figure 5 ROC Curve of the BN Model for Titanium, Silicon Dioxide, and Silver 

 

4.0 DISCUSSION 

In this section, three AgNPs with different physicochemical properties were incorporated as evidence into the BN 
model for testing and validation purposes. The data are presented in Table 4. These AgNPs are referred to as A, 
B, and C. Observations of their biological effects were based on pulmonary effects, inflammation, and 
genotoxicity. These are summarised in Table 5. 

In the experimental work conducted by Gosens et al. (2015), three animals per group were exposed to A 
via intratracheal instillation with doses ranging from 0 to 128 μg/mouse. Their results indicated that although 
AgNP agglomeration could be observed inside lavaged macrophages, there were neither signs of acute cell 
damage nor inflammation in the mice. Additionally, no pulmonary effects were reported due to exposure to 
nanosilver via injection. In a validation exercise, the physicochemical properties of A (particle size, study type, 
and administration route) were introduced as evidence into the redeveloped BN model produced in this work. 
Convincingly, the outcomes predicted by the model were “None” for pulmonary effects and inflammation, in line 
with the published experimental report. 
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In work conducted by Seiffert et al. (2016), four biological effects (assayed silver levels, distribution of 
silver particles in the lungs, surfactant composition, and lung function changes) were examined after the exposure 
of Brown-Norway and Sprague-Dawley rats to B-type AgNP aerosols. The physicochemical properties of B are 
shown in Table 4. The researchers concluded that exposure to B would cause acute pulmonary neutrophilic 
inflammation due to the production of proinflammatory and pro-neutrophilic cytokines. Brown-Norway rats were 
more adversely affected as additional eosinophilic inflammation and deterioration of lung function could be 
observed. The redeveloped BN model was retested, albeit with the properties of B as newly-introduced evidence. 
Its functionality was proven once more as the model successfully showed that, in comparison to A, B would 
impose a greater risk of pulmonary effects and inflammation (“Low” and “Medium”). These predicted changes 
could have been discerned from the type of evidence provided. The nanoparticles shape and curvature and their 
administration route are thought to influence cell-binding efficacy and dissolution (Buchman et al., 2019). 
Findings presented by Helmlinger et al. (2016) suggested that the shape of an AgNP particle greatly dictates 
dissolution rates and, therefore, its cytotoxicity and antibacterial effects. 

Dissolution indicates biodurability and is directly correlated to an entity’s potential to influence the long-
term toxicity and pathogenicity of the particles deposited in the body. In a biological system, known dissolution 
rates of the following entities from the highest to the lowest are platelets > spheres glucose synthesis > spheres 
microwave synthesis ≈ rods > cubes (Helmlinger et al., 2016). This correlation explains why AgNPs persist for at 
least seven days after inhalation, as published data by Seiffert et al. (2016) indicated that a longer time is required 
to observe the impact of exposure via inhalation compared to direct instillation. 

In the in vitro experiments conducted by Kaiser et al. (2013), a different set of parameters were 
monitored, including apoptosis/necrosis, reactive oxygen species, and genotoxicity. The study showed that the 
dose and duration of exposure highly influenced genotoxicity. For example, exposure to 5 µg/mL of AgNPs for 
48h resulted in DNA strand breaks without significant consequences to health, although adverse effects were 
observed once the concentration was doubled to 10 µg/mL. Similarly, the percentage of cell death could only be 
observed at higher concentrations of AgNP exposure. Due to the limitation of the present BN model, a comparison 
to Kaiser et al.’s study was conducted only for genotoxicity. With its physicochemical properties introduced as 
evidence, the model classified the effect of C as “None”, in agreement with experimental data from the in vitro 
studies. This could be perceived as yet another testament to the model’s usability. Furthermore, as C is a mixture 
of spheres and rods, its biodurability is low compared to other shapes, explaining its non-genotoxic nature. 
Importantly, the accuracy of its prediction displayed the capability of the BN model to infer a suitable conclusion 
based on a simple attribute of the nanomaterial of concern. 

In conclusion, the comparison shown in Table 5 proved that the BN model is robust enough to produce 
results already verified through real-world experiments. With a 75% accuracy rate, the model was able to produce 
accurate predictions with the aid of good quality of data obtained and supported by expert elicitation, as reported 
by Marvin et al. (2017). Nonetheless, although experts had validated the previous BN model’s nodes, states, and 
linkages, there were certainly ways to improve its reliability. In this current work, a redeveloped BN model was 
constructed to accept and accrue evidence in the form of physicochemical properties from any published study. 
This could ensure greater prediction accuracy and thus better assist the assessment of occupational health hazards 
in the nanosilver industry. In the future, the model algorithm could also be further modified to factor in more 
evidentiary parameters, such as dose and duration of exposure. 
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5.0 CONCLUSION 

A BN model was developed and used to predict the health hazards imposed by AgNP exposure in this paper. 
Three case studies were demonstrated with resulting predictions compared to published experimental data. These 
were consistently in line with published data, indicating that the BN model was able to predict potential health 
hazards in a nanosilver-centric workplace. The strength of the BN model is derived from its data learning feature 
and its ability to infer and calculate probabilities according to the newly presented evidence. However, as the BN 
methodology relies heavily on the initial input, the accuracy of its predictions would only be as good as the quality 
of the initiating data. 
Furthermore, predictions are limited to the properties and effects decided at an early stage of model development. 
Any other factors that may affect the final results would be disregarded unless included during the development 
stages. This current study had thence redeveloped the previous BN model to consider nanomaterials’ 
physicochemical properties, as it is likely critical for proper occupational health assessment. The outcomes of this 
work are vital in supporting the development of a precautionary approach in managing nanomaterial risk and 
improving occupational health practices in the industry. 
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